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Introduction

A Massive Open Online Course (MOQOC) is a free, open, online course designed to offer a taste of higher
education to learners from across the world. The University of Birmingham is delivering new MOOCs in
partnership with FutureLearn. Delivered by world-class academics from the University of Birmingham
and other partners of the HORIZON Recharged project (GA no. 101086413), the course enable learners
worldwide to sample high-quality academic content via an interactive web-based platform from leading
global universities, increasing access to higher education for a whole new cohort of learners.

The course is developed by senior academic staff and their content is reviewed regularly, taking into
account student feedback.

This MOOC brings together world experts, including general audiences, aiming to provide training with
life-long updates and professional development opportunities for general and specialised audiences.
The MOOC contains all the necessary components of a university taught module, e.g. prerequisites,
content and aims, learning outcomes, attributes for sustainable professional development (cognitive,
analytical, transferable skills, professional and practical skills), expected hours of study, assessment
patterns, units of assessment and reading list, warm-up sessions, with relevant podcasts and videos,
lecture notes and recorded lectures, some of which will be tailored for general audiences. This open
course will be available on futurelearn.com and on the project website.

These lecture notes are accompanying the seven lectures of the MOOC. Following is the MOOC
description, which contains the outcomes, the aims per week and the learning activities. The latter
include a combination of material acquisitions and discussions, investigations and production, practical
examples and analysis of case studies, and a set of collaboration and discussion forum.

Outcomes

Lecture 3-Week 3

The aim of this week is to introduce the concept and properties of resilience for critical infrastructure,
including quantification of resilience based on metrics for decision making. This week also includes
definition of restoration and reinstatement models considering available resources, level of damage and
type of infrastructure assets. The concepts of proactive (ex-ante / by design) and reactive (ex-post/ by
intervention) resilience will be presented based on case studies for critical assets. Resilience by
assessment will be discussed as a capability in case of inaccessible assets.

e Defineresilience and its properties, restoration and reinstatement models, considering temporal
and spatial variabilities.

o Define proactive and reactive restoration at asset and system level.

o Define resilience metrics for decision-making.

Present case studies on quantification of resilience for critical infrastructure exposed to different hazard
scenarios.
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Lecture 3. Resilience assessment

Lecture 3
Massive Open Online Course
Resilience, Sustainability & Digitalisation in Critical Infrastructure

Resilience assessment

Dr Stergios-Aristoteles Mitoulis
Scientific Manager of ReCharged
Head of Structures & Associate Professor
University of Birmingham
S.A.Mitoulis@Bham.ac.uk
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Lecture 3 Outcomes

[1 Define resilience and its properties, restoration and reinstatement models, considering temporal and
spatial variabilities.

[0 Define proactive and reactive restoration at asset and system level.

[0 Define resilience metrics for decision-making.

[1 Present case studies on quantification of resilience for critical infrastructure exposed to different hazard

scenarios.
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Activity 1. Restoration and reinstatement models

« Restoration vs reinstatement
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+ Define resilience and its properties

+ Restoration and reinstatement models

ACTIVITY 1: Restoration and reinstatement models

« Temporal and spatial variabilities and other uncertainties

Resilience assessment
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Define resilience and its properties

Robustness
the ability of systems to
withstand a certain level of stress
without suffering loss of function.

resilience

Resourcefulness
the ability to identify problems
and resources when threats may

disrupt the system.
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The attributed of resilience - the 4Rs (Bruneau et al. 2003)

a

1

Robustness
the ability of systems to
withstand a certain level of stress
without suffering loss of function.

Resilience
triangle
1- Robustness Resilience triangle
is affected by

Functionality (%)

and redundancy
Resourcefulness

the ability to identify problems

and resources when threats may Robustness

disrupt the system.
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hazard

Different scales: from micro-to macro scale

Bottom-up approach:

component — asset — network— system— system of systems— regional — national — international
Top-down approach:
international — national — regional — system of systems — system — network — asset — component

R.’ ¢ 7 UNIVERSITYOF
®ecCharged P BIRMINGHAM

(LT
R . @l UNIVERSITYOF s
°0Charged PSJ BIRMINGHAM



HORIZON-MSCA-2021-SE-ReCharged-101086413

Restoration and reinstatement models

Quantification of resilience
robustness of structure, rapidity of restoration, resilience indices, examples

Resilience: the capacity to recover quickly from catastrophic events.

Usually recovery functions are defined for different hazards and damage states, and thus
combined to derive the resilience curve of a structural system.

Different functional forms can be adopted to characterise recovery functions.
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... or continuous functional forms usually representative of cumulative probability density function.
This is convenient since it allows characterising recovery only defining few parameters.
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Restoration and reinstatement models
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(a) illustration of functionality recovery process

(b) Hazus (2011)
(c) Multi-parameter sinusoidal model (Bocchini et al. )

wverson 4 R+ Robustness, Redundancy, Resourcefulness, Rapidity
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Restoration and reinstatement models

(a) Typology
Asset characteristics (e.g.
material, type of piers/abutments/
deck/foundations, design

(d) Asset/network recovery
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Infrastructure quality

(e) Resilience assessment
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Resilience curves and metrics
for time horizon t;, (Table 1)

Argyroudis, 2021

Restoration vs reinstatement

Survey for bridge restoration after flood

I |dledta|ymse n reinstatement time in days (after the initiation of the cost ratio (%
level ([g"-) (before any restoration works) restoration 7 °
(see Table 1 restoration _ta§l:(s & replacement
for works) 0 3 15 30 60 ?"o ”.}' s;,t'%r)' cost of the
L see Table .
deseription) min | max % traffic capacity of the bridge after damage bridge)
(4) (check mark “X")
(1) (2) (3) (5) (6)
0|50(100f O |50(100| 0 |50| 10010 |50|100] O |50 |100
minor 4 14 X X X X X [R12,R5 5
moderate 10 30 X X X X X JR1,R12,R5 8
R1, R6, R12,
extensive 25 45 | X X X X X JR14, R2, R186, 15
R5
R1, R6, R12,
severe 30 70 X X X X X |R14, R2, R16, 30
R15, RS
comments:

Mitoulis SA, et al. 2021
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duration (days)

weighting factors

(@)

Restorati o n VS rei nstate m e nt code restoration task minimum maximum mean std dev [ minor moderate extensive severe
@ (2) 3) (4) ® ©® |0 (10)
RO no action is required na na na na na na na na
R1 armouring countermeasures 56 24.8 15.2 13.4 07 08 0.9 1.0
H and flow-altering/cofferdam . i . - . - ¥ -
Survey reSUItS and proceSSIng R2 temporary support per pier 3.2 9.2 6.2 4.2 0.7 0.8 0.9 1.0
temporary support of one
R3  butment 3.0 10.0 65 46 0.7 0.8 0.9 1.0
temporary support of one
R4 deck span /segment 3.6 10.8 7.2 3.9 0.7 0.8 0.9 1.0
(midspan or support)
repair cracks and spalling
R5 with epoxy andlor concrete 34 19.0 11.2 130 0.5 0.7 0.85 1.0
Re 'algnmentandorleveling | 155 295 209 236 | 05 07 08 10
of pier : . . X . X . X
R7  re-alignment of bearings 2.8 10.0 6.4 6.8 1.0 1.0 1.0 1.0
jacketing or local
R8 strengthening (pier or 11.4 35.0 232 300 0.0 0.4 0.7 1.0
abutment or foundation)
jacketing or local
RO Grengthening (deck) 13.8 328 233 233 [ 00 0.4 0.7 1.0
re-alignment of deck
R10 segment 8.2 18.2 132 179 0.5 0.7 0.85 1.0
R11  erosion protection measures 6.8 16.3 11.5 6.4 0.7 0.8 0.9 1.0
rip-rap and/or gabions for
R12 filling of scour hole and scour| 6.0 23.4 147 135 0.7 0.8 0.9 1.0
protection
R13  removal of debris 2.9 74 52 4.7 0.7 0.8 0.9 1.0
ground improvement per
R14 foundation 11.2 32.0 216 218 0.7 0.8 0.9 1.0
installation or retrofitting of
RIS oeb foundation system 338 660 499 493 | 1.0 10 10 10
extension of foundation
R16 footing 20.8 46.0 334 321 1.0 1.0 1.0 1.0
reconstruction/replacement
R17  of the abutment and 31.0 72.0 515 411 | 1.0 1.0 1.0 1.0
wingwalls
reconstruction/replacement
R18 O er 420 780 600 443 [ 10 10 10 10
temporary support and
R19 replacement of the bearings 3.8 94 6.6 38 1.0 1.0 1.0 1.0
replacement of the backfill
R20 and approach slab and 12.0 32.0 220 115 1.0 1.0 1.0 1.0
mudjacking
Rz1  [eplacement of expansion 2.0 72 46 31 |05 07 08 10
joint . . X . . . . X
demolish/replacement of a
R22 4ol panisegment 222 510 366 232 |10 10 10 10
. ) - demolish/replacement (part)
RIN UNIVERSITYOF R23  ihe bridge 88.8 3340 2114 1338 | 1.0 10 10 10
° T
®eCharged BIRMINGHAM Mitoulis et al. 2021 R24 please add customised task B B B B B B B
. .
Restoration vs reinstatement
Survey results: reinstatement models
spread foundations deep foundations
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(b)

Figure 3. Reinstatement models illustrating the post-flood gain of the traffic capacity (%) of the
bridge for spread (a) and deep (b) foundation (dashed lines is a projection based on judgment).

Mitoulis et al. 2021
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Restoration vs reinstatement
Restoration task prioritisation, dependencies, durations & models

days

[ a5 55 60 65 [0 [r5  [s0 85 [eo 95  [1o0 105 [0 | ... [211]
1

spread foundation

g
s

‘moderate

0.60

Cu/Co

0.40

extensive

0.20
IRs |
0.00
spread 0 20 40 80 80 100 120 140 180 180 200 220
foundations time (days)
o ——minor ——moderate ——extensive ——severe
RS
Ras ]

Stepwise restoration models illustrating the ratio of the post-flood bridge capacity (Cy) over
the original capacity (C,)

Mitoulis et al. 2021
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Temporal and spatial variabilities and other uncertainties
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Temporal and spatial variabilities and other uncertainties
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Hence apart from hazard intensity its
critical to know:

-where the hazard occurs

-the extent of the hazard: large area vs small
-temporal variabilities

.--- UNIVERSITY®F Settlement 2
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The two slides above illustrate conceptual maps highlighting the importance of understanding temporal
and spatial variabilities and other uncertainties related to hazards for our resilience assessments.

Components of the Map:

1. Routes and Infrastructure:
o Main Roads: Indicated by thick purple lines.
Secondary Roads: Represented by thinner gray lines.
Railways: Depicted by dashed lines.
Tunnels: Shown as connected double lines (T1, T4, T5).
Bridges: Represented by parallel lines with a gap (B2, B5, B6, B8, B9, B10).
2. Key Locations:
o Settlements: Illustrated with building icons and labelled as Settlement 1, Settlement 2,
and Settlement 3.
Airports: Depicted with airplane icons and labelled as Airport 1 and Airport 2.
Power Stations: Represented with factory icons and labelled as Power station 1 and
Power station 2.
o Island: Shown as a landmass shape.
3. Hazard Representation:
o Cloud with raindrops symbolizing a hazard event affecting the area, placed centrally on
the map.

o O O O

Points of Interest:

e The green lines appear to denote critical routes or pathways impacted by the hazard.
e The connections between different infrastructures (e.g., roads, railways, bridges, tunnels)
suggest a complex network affected by the hazard.
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e The description emphasizes the importance of knowing:

o Where the hazard occurs
o The extent of the hazard (large area vs. small area)
o Temporal variabilities (time-related changes)

This map serves to emphasize the necessity of understanding the spatial distribution and temporal
aspects of hazards, focusing on how they impact various infrastructural elements and settlements. It

highlights the interconnected nature of these elements and the critical information required to manage
and mitigate hazards effectively.
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Activity 2. Proactive and reactive restoration

ACTIVITY 2: Proactive and reactive restoration

* Proactive (ex-ante) vs. reactive (ex-post) and comparisons strategies

* Adaptation strategies

:"' UNIVERSITYOF
®eCharged & BIRMINGHAM

Proactive (ex-ante) vs. reactive (ex-post) and comparisons strategies
Proactive / preventive maintenance / adaptation before the threat

GH: operation until the end of life

100
22
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S g
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= o “b Time
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completion hazard time for which end of (b)
of construction event resilience is life
measured
Al: deterioration of infrastructure quality throughout its life
BC: proactive adaptation measures and/or maintenance
CD: deterioration of infrastructure
B UNIVERSITYOF DE: restoration after a climate hazard occurrence (see Fig. 1, Cto F)
[ d q N u . . . .
*echarged BIRMINGHAM  FG: enhancement of infrastructure performance with adaptation measures
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Proactive (ex-ante) vs. reactive (ex-post) and comparisons strategies
Reactive / corrective maintenance/adaptation before the threat
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of construction event resilience is life
measured

Al: deterioration of infrastructure quality throughout its life

CD: loss of performance due to hazard occurrence

DG: reactive measures, partially restored

DF: reactive measures, fully restored

DE: reactive and adaptation measures beyond the original capacity

]

Proactive (ex-ante) vs. reactive (ex-post) and comparisons strategies
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Proactive (ex-ante) vs. reactive (ex-post) and comparisons strategies
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Time Time
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hazard hazard time for which

event event resilience is
measured
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Adaptation strategies
EU Strategy on Adaptation to Climate Change - Policy context

» The 2030 Agenda for Sustainable Development

* The Paris Agreement
* The European Green Deal:

* European Climate Law, e 2030 Climate Target Plan
» European Climate Pact e EU Biodiversity strategy
* Farm to fork strategy e Forest strategy

* Renewed sustainable finance strategy

* ... and more!

European |
Commission
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Adaptation strategies
EU Strategy on Adaptation to Climate Change - Vision & Objectives

* Vision: by 2050 the EU will be a climate-resilient society, fully
adapted to the unavoidable impacts of climate change

* Objectives:

* More systemic adaptation — support policy development at all levels
and sectors

» Faster adaptation — speeding up adaptation across the board

» Stepping up international action for climate resilience

R:"'-_ UNIVERSITYOF
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« Smarter adaptation — improving knowledge and managing uncertainty i

© picture: Peter Léffler

m European
Commission

Adaptation Strateg ies - Exam ple Social Environ- Economic TInstitut- Physical

mental ional

C I i mate riSk CLIMATE Mitigation of climate change related hazard events -
t SERV'CES (e.g. ecosystem rehabilitation)

managemen Mechanisms to

approaches at anticipate climate risks Anticipatory exposure prevention (Avoid) -

for decision making

“Restrict settlements in hazardous areas” e.g. through risk zoning,
land use planning, insurance schemes etc.

different levels of
climate change

Retreat - “pulling-out of hazard areas™
Redirection of spatial development,
resettlement of objects of interest

Proactive/
Anticipatory
prevention

Protection - “create protective structures”
to keep climate threats physically away
from a system of interest (e.g. via dykes;
fences, house window protection)

(settlements, objects)

Robustness - “Accommodate system of interest”
to become more robust to climate threats
(elevated houses; climate proof construction
materials, drought-, flooding-, and salt

tolerant crops)

source: https://www.transformative-mobility.org

Early warning, response & disaster management systems

°°te, e UNIVERSITYOF Climate change resilient recovery / building back better
o ree
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Operational
Maintenance

Exposure
reduction

Different levels of
adaptation to match
climate risk.

Pathways of actions
can efficiently mave
between response
levels at the pace
that climate change
unfolds

Vulnerability

reduction
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Adaptation strategies - Decision tree for urban mass transit projects

CLIMATE HAZARD

Increasing frequency and magaitude of storms Rising sea levels and increased storm surge heights pitation or freay

SYSTEM IMPACTS ‘~\

|
PREI.\JECT VULNERABILITIES

ADAPTATION OPTIONS

source: https://www.transformative-mobility.org
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Comparisons of ex-ante and ex-post strategies

Discussion:
« Can you think of qualitative examples where proactive strategies

would be more efficient and cost effective to reactive strategies?
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Activity 3. Resilience metrics

ACTIVITY 3: Resilience metrics

* Resilience metrics
» Resilience-based decision making

» Case studies

R o0 ' UNIVERSITYOF
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Resilience metrics

sea-level rise
(SLR)

Figure 1: Resilience model
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climate change (CC) ‘ /’,‘_/}
/4

precipitation
(PR)

INDUSTRY

A
% flood-scour
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earthquake
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. .
Resilience metrics
o ical comments and/or
reference formulation par s of the resilience metric advantages &
disadvantages
Robustness units: percentage
Robustness = B — C Rapidity units: average
Ayyub § recovery rate in percentage
(2014) Rapidity = :%3 See Figure 1 per time
o Simple and straightforward
metrics, easy for comparisons
Q(t): the infrastructure quality, or
performance of a system at a given time t.
Loss of resilience R’ to : the time of incident or disturbance , g n
Bruneau et occurience. B ey e
al. (2003) tL t,: time when restoration is completed d
R'=!" [100-Q(D)]dt (quality of infrastructure is 100%). TSEEEs e b &
0
See symbols in Figure 1
'?rs:gﬂ:e Bruneau ResiliencellX
Pre hazard - Rapldity .~ 9 Post hazard - and R corresponds to the area
100 Normal function pidity - > Normal function Reinhorn a Same as above below the resilience curve
_ Deteriorag Loss of g R=! Hdt measured from ty to t;
2g fﬁ:c"{,""’a“:‘: ) resilience (2007) © Qo
£ 3 R 7 i i
3, 8 ~ " Units: performance per unit
2e . 3 -~ Attoh-Okine o Q()dt s b time, where performance can
5 1 5 -
B E P i Resilience etal. (2007) ~100(t;-tp) ame as above be measured in percent
2 _g § ‘ R (Figure 1).
&z E idle |
5 ° n"'"e} Time Ris calculated for a larger
0 \t’ ' ¢ . Cimellaro et ty: time horizon (for a portfolio of bridges period t, (or time horizon), so
o * n al. (2009) this can be the maximum recovery time). that a faster recovery results
hazard  initiation completion  time for which ;
event of recovery of recovery  resilience is to higher values of R.
measured
Figure 1: Resilience model
ot [ UNIV ERSITYOF X
. BIRMINGHAM Source: Argyroudis, 2022
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Resilience-based decision making

Functionality loss

——
0.0 0.5 1.0

5 km

UNIVERSITYOF
BIRMINGHAM

o®'e.
L )
®eCharged

Tafour et al. (2024)

Define input for each iteration

Damage and functionality loss

Estimate link restoration costs and
times

Allocate available resources

Resilience-based decision making

Functionality loss
[ —
"y = 0.8 '...i,n‘i-—-l—l—l—-l—-l
Allocate available resources ‘S‘ '." .-."
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Case studies
Multihazard resilience assessment framework

(ii) Physical vulnerability

| Fragility curves (IH) |

Multihazard resilience assessment framework

IH: Individual hazard
MH: Multiple hazard
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gs 104 (iii) Recovery
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(iv) Resilience

Resilience curve & indices

(with/without intermediate restoration)

o
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Case studies

Resilience assessment for multiple hazards: restoration after Haz-1 and before Haz-2

IMJ

fog <t <min(tz1,f2)

Equation (2)

o(dmz)= Y 05 [1|DS; 2 | P DS;o| 105
i=0

lo2 <t<Ipp

Pre hazard -
Normal Post hazard -
function Normal function
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[
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0
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event event

Vulnerability 1: fragility functions for the initial or deteriorated asset

Equation (3)

Resilience Index

tp2

1
Vulnerability 2: fragility functions for the retrofitted asset R= Tea—toa f Q(t)dt
0 —
« = | )= ¢<—) Equation (1)
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Case studies

Resilience assessment for multiple hazards:
without restoration after Haz-1 and before Haz-2 occurs

Pre hazard -

Normal Post hazard -
function Normal function
100 LD;T‘ ______
erioratj, o~
_ O Cumuiatyg x
<) z z
= M monsoonscondr—
> E @ "ps; "ps,
o - _
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H 3 2 =0 ;=0
g Equation (4)
S
v St Time (t)
0
to.wi i to2 tr 12
Haz-1 Haz-2
event event

Vulnerability 1: fragility functions for the initial or deteriorated asset

Vulnerability 1+2: fragility functions for the damaged asset (state-dependent fragility functions are needed)
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Case studies
Resilience assessment for multiple hazards:
Haz-2 occurs before the restoration due to Haz-1 is completed

Pr;::::;d ) Post hazard -
function Normal function
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Temporal variation

Vulnerability 1: fragility functions for the initial or deteriorated asset

Vulnerability 1+2: fragility functions for the damaged/partially restored asset
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Case studies
Resilience assessment for multiple hazards:
Haz-2 occurs before the restoration due to Haz-1 is completed

)
Pre hazard - = Post hazard -
10 Normal function §' _ Normal function
g 2 P ’”
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Case studies
Example 1:
Restoration of functionality after a scenario for a hazard (FL) of certain intensity

@ 1015m
10% 135 (M4—— 335m 335m 335m — 10%135(m)
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:"‘- UNIVERSITYOF Collapse 0.7 0.4 Collapse 30 15
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Case studies
Example 1:
Restoration of functionality after a scenario for a hazard (FL) of certain intensity (Sc=0.3m)

(a) 1015m
10% 135 (Me— 335m 335m 3B5m — 10x135(m)
n
DS O T T [7on |
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t=0 ‘
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PP S 0877 ___ il 1r y
DS > DS1 1 — Sc=0.3m
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Example 2:
Restoration of functionality after 7 different scenarios (and hazard intensities)
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Example 3:
Improving resilience of a bridge with different restoration strategies

@ 1015m
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Case studies
Example 3:
Improving resilience of a bridge with different restoration strategies
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Case studies

Example 3:
Improving resilience of a bridge with different restoration strategies
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Case study

Resilience quantification:
» Step by step quantification of resilience for critical infrastructure

considering different hazard and adaptation scenarios
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