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Introduction 
 
A Massive Open Online Course (MOOC) is a free, open, online course designed to offer a taste of higher 
education to learners from across the world. The University of Birmingham is delivering new MOOCs in 
partnership with FutureLearn. Delivered by world-class academics from the University of Birmingham 
and other partners of the HORIZON Recharged project (GA no. 101086413), the course enable learners 
worldwide to sample high-quality academic content via an interactive web-based platform from leading 
global universities, increasing access to higher education for a whole new cohort of learners.  
The course is developed by senior academic staff and their content is reviewed regularly, taking into 
account student feedback.  
 
This MOOC brings together world experts, including general audiences, aiming to provide training with 
life-long updates and professional development opportunities for general and specialised audiences. 
The MOOC contains all the necessary components of a university taught module, e.g. prerequisites, 
content and aims, learning outcomes, attributes for sustainable professional development (cognitive, 
analytical, transferable skills, professional and practical skills), expected hours of study, assessment 
patterns, units of assessment and reading list, warm-up sessions, with relevant podcasts and videos, 
lecture notes and recorded lectures, some of which will be tailored for general audiences. This open 
course will be available on futurelearn.com and on the project website.  
 
These lecture notes are accompanying the seven lectures of the MOOC. Following is the MOOC 
description, which contains the outcomes, the aims per week and the learning activities. The latter 
include a combination of material acquisitions and discussions, investigations and production, practical 
examples and analysis of case studies, and a set of collaboration and discussion forum. 

Outcomes 
 
Lecture 5-Week 5 
The aim of this week is to explore digital technologies' impact on infrastructure monitoring, covering data 
acquisition, processing, and modelling. Key objectives include understanding digitalization's influence 
on infrastructure lifecycle, categorizing technologies by application scope, examining remote sensing 
methods for data collection, and addressing challenges in assessing structural conditions through 
acquired data. 
 

• Types of technologies, disparate source and types of data 
• Algorithms and Model Updating (ML and CV) 
• Digital modelling and Building information modelling 
• Examples of use digital of technologies for assessment of infrastructure throughout the lifecycle. 

 
 
 

  

https://metainfrastructure.org/massive-open-online-course/
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Lecture 5. Digital technologies 

 
 

 

Lecture 5 

Massive Open Online Course 

Resilience, Sustainability & Digitalisation in Critical Infrastructure 

Jelena Ninic

Associate Professor in Digital Engineering

University of Birmingham

J.Ninic@bham.ac.uk

Digital technologies

Lecture 5 Outcomes

• Understand how digital technologies are employed in monitoring and inspection of 

infrastructure.

• Learn about the classes of digital technologies and understand the scope of their 

application.

• Understand how machine learning and computer vision can be employed to transform 

the way we design, construct and maintain our structures

• Learn what are Building Information Modelling and Digital Twins and their application for 

digital modelling of infrastructure. 
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Activity 1. Types of technologies and types of data  

 
 

 
 

Digital Engineering is the construction of digital (computer) models that represent every characteristic of 
a complex product or system that is to be developed. Digitalisation of infrastructure involves application 
of digital technologies, processes, and methodologies in the design, construction, operation, and 
maintenance of infrastructure assets. It leverages digital tools, software, and data-driven approaches to 
improve efficiency, accuracy, and collaboration throughout the lifecycle of a project. 

ACTIVITY 1:  Types of Digital Technologies and Data (DT & Data)

• What is digital engineering? 

• What is the value of data? 

• Type of theologies for monitoring & assessment
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Digital technologies include: Building Information Modelling (BIM), computer-aided design (CAD), virtual 
and augmented reality, data analytics, and advanced simulation and visualization techniques. These 
tools enable engineers and other stakeholders to create and manage digital representations of 
structures and infrastructure, facilitating better decision-making, reducing errors and rework, improving 
coordination, and communication and enhancing the long-term performance and resilience of the built 
environment (Borrmann et al., 2018). 

 
 

 
 
Digitalization of structures and infrastructure encompasses several key aspects. Modelling and 
Visualization are crucial for comprehending design and spatial relationships. Collaboration and 
Coordination are enhanced through shared digital platforms and real-time data exchange among 
multidisciplinary teams. Data Integration and Analysis combine various sources, including sensor data, 
geospatial information, and historical records, for comprehensive insights. Simulation and Analysis 
evaluate structural integrity, energy efficiency, and environmental impact. Construction and Asset 
Management leverage automated machinery, drones for surveying, real-time progress tracking, and 
digital asset management systems, ensuring efficient maintenance, operation, and overall lifecycle 
management of infrastructure assets. 
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All data driven processes depend on both quality and quantity of data. Quality of the data will drive the 
accuracy and reliability of outcomes. High-quality data is accurate, complete, relevant, and up-to-date. 
Inaccurate or incomplete data can lead to flawed analyses, incorrect predictions, and suboptimal 
decision-making. Large Quantity of data will enhance the robustness and validity, enable more 
comprehensive analysis, statistical significance, and better identification of patterns, trends, and 
correlations. Large datasets can also help in training machine learning models for predictive analytics or 
optimization tasks.  
To ensure an adequate quantity and quality of data, proper data collection and acquisition processes 
must be implemented. This involves defining data requirements, selecting appropriate data sources, 
employing accurate measurement techniques, and utilizing reliable data collection tools or sensors. 
And to monitor and inspect infrastructure we have number of available  technologies. 
 



HORIZON-MSCA-2021-SE-ReCharged-101086413 

 
5-8 

 
 
Several types of digital technologies commonly used for the assessment of infrastructure. 
Remote Sensing provide high-resolution imagery and data about infrastructure assets. These 
technologies are useful for assessing large-scale projects, monitoring changes, and identifying potential 
issues. Geographic Information Systems (GIS) combines spatial data with attribute information to create 
digital maps and models of infrastructure assets. It enables the visualization, analysis, and management 
of infrastructure data, aiding in asset inventory, condition assessment, and planning. 
Non-Destructive Testing (NDT) techniques employ digital technologies to assess the condition of 
infrastructure components without causing damage. Examples include ultrasonic testing, infrared 
thermography, ground-penetrating radar, and magnetic particle inspection. NDT helps detect defects, 
cracks, corrosion, and other flaws in structures. 
 



HORIZON-MSCA-2021-SE-ReCharged-101086413 

 
5-9 

 
 
Structural Health Monitoring (SHM) systems use sensors like accelerometers, strain gauges, 
displacement sensors, and fiber optic sensors to continuously monitor structures. SHM detects 
anomalies, predicts failures, and optimizes maintenance. The Internet of Things (IoT) connects devices 
with sensors and embedded processing, providing real-time data on temperature, humidity, pressure, 
and vibration, enabling continuous monitoring and condition-based maintenance. Mobile applications 
for infrastructure assessment streamline data collection and reporting. Inspectors use these apps on 
smartphones or tablets to capture photos, record measurements, and input data, which is synchronized 
and accessible in real-time. 
 

 



HORIZON-MSCA-2021-SE-ReCharged-101086413 

 
5-10 

Remote sensing is the acquisition of information about an object without making physical contact, in 
contrast to in situ or on-site observation. It allows to capture, visualize, and analyse objects. It generally 
refers to the use of satellite- or aircraft-based sensor technologies to detect and classify objects on 
Earth. 
There are two types of technologies, "passive" remote sensing when the reflection of sunlight is detected 
by the sensor (e.g. optical, thermal and infrared), "active" remote sensing when a signal is emitted by a 
satellite or aircraft to the object and its reflection detected by the sensor (e.g. LiDAR, InSAR) (Adamo et 
al., 2020; Sabins, 1998).  
 

 
 
GIS is a framework for gathering, managing, analyzing  and visualizing data. GIS reveals deeper insights 
into data, such as patterns, relationships, and situations—helping users make smarter decisions. GIS 
Includes: maps, data, analysis, applications.  
Maps means geographic container for the data layers and analytics. Geographic data encompass 
imagery, features, and base maps that are integrated with spreadsheets or tables. These data are 
essential for the analysis and evaluation of suitability, capability, estimation, prediction, interpretation 
and understanding of data. Additionally, end users have access to applications that deliver a focused 
user experience for efficient task completion. 
 



HORIZON-MSCA-2021-SE-ReCharged-101086413 

 
5-11 

 
Non-destructive testing (NDT) plays a crucial role throughout the infrastructure lifecycle, from 
construction to maintenance and decommissioning. NDT techniques assess and evaluate the integrity, 
safety, and performance of structures without causing any damage. This is essential for detecting 
defects, flaws, and potential issues in infrastructure components early, preventing costly failures and 
ensuring long-term durability. Common NDT methods include Ground Penetrating Radar (GPR), 
ultrasonic testing, radiography, electromagnetic testing, magnetic testing, and acoustic testing. These 
methods provide critical data for making informed decisions, planning maintenance, and enhancing the 
safety and reliability of infrastructure systems, thereby optimizing lifecycle management and extending 
the lifespan of assets. 
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The various Non-Destructive Testing (NDT) methods are distinguished by the principles they utilize and 
the types of defects or material conditions they are best suited to detect. Here's a comparison of each 
method based on their mechanisms, typical applications, and limitations. 
Ground Penetrating Radar (GPR) utilizes radar pulses to investigate the subsurface condition of 
materials or spaces, to detect voids, presence of discontinuities, etc.  
Ultrasonic NDT (UT) -transmitting high-frequency sound waves to identify changes in properties.  
Radiography NDT (RT) - using gamma- or X-radiation on materials to identify imperfections. 
Eddy Current NDT (ET) - electromagnetic testing that uses measurements of the strength of electrical 
currents in a magnetic field surrounding a material to assess the condition, which may include the 
locations of defects. 
Magnetic Particle NDT (MT) - identifying imperfections in a material by examining disruptions in the flow 
of the magnetic field 
Acoustic Emission NDT (AE) - using acoustic emissions to identify possible defects and imperfections 
Dye Penetrant NDT (PT) - detects surface defects in non-porous materials by applying a liquid penetrant 
and developer to highlight flaws. 
 

 
 
Structural Health Monitoring (SHM) is a systematic process that involves using sensors, data acquisition 
systems, and analysis techniques to continuously monitor the condition and performance of 
infrastructure assets. The primary objective of SHM is to detect any changes or anomalies in the 
structures' behaviour and health, providing early warnings of potential issues and aiding in maintenance 
and decision-making. SHM involves several critical tasks; First, sensors are strategically deployed to 
collect data on stress, strain, vibration, and temperature. For example, strain gauges and 
accelerometers might be installed on key structural components. Next, this data is analyzed and 
interpreted to identify any anomalies or potential issues. Condition assessment then determines the 
current health of the structure, estimating remaining life based on detected wear and tear. Predictive 
maintenance uses this information to plan timely interventions, such as reinforcing weakened sections. 
Finally, long-term performance evaluation ensures the structure remains safe and functional over its 
lifespan, adjusting strategies as needed. 
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The Internet of Things (IoT) integrates smart devices, sensors, and communication technologies to 
collect and exchange data in real-time. This connectivity enables digital monitoring of infrastructure 
elements such as bridges, roads, water systems, and energy grids, providing valuable insights into their 
performance, condition, and usage. 
Strategically deployed sensors measure parameters like temperature, humidity, vibration, strain, 
pressure, and flow rates. Key components of IoT include these sensors and devices for data collection, 
communication networks (e.g., Wi-Fi) to transmit data, a central platform or dashboard to integrate the 
data, and advanced data analytics and cloud computing for processing. 
Decision support systems then use this analyzed data to provide actionable insights, enhancing 
infrastructure management efficiency and reliability. IoT thus transforms how we monitor and maintain 
infrastructure, paving the way for smarter, more responsive, and sustainable systems. 
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The Internet of Things (IoT) will generate valuable data from various monitoring systems during 
construction and operation. This data will refine designs, extending digital construction beyond project 
sites. By connecting BIM models to City Information Modelling (CIM) and “Smart City” systems, we 
enhance integration and efficiency across urban environments. 
 

 
 
The main difference between IoT and Structural Health Monitoring (SHM) lies in their scope and focus. 
 IoT for infrastructure monitoring is a broader concept that involves integrating various smart devices and 
sensors into different types of infrastructure elements. This allows for the collection of real-time data, 
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providing comprehensive insights into the overall performance, condition, and usage of the 
infrastructure. 
On the other hand, SHM is a specialized subset of infrastructure monitoring that specifically targets the 
structural integrity and health of civil engineering structures. Its scope is primarily on the structural 
aspects, focusing on continuously monitoring and assessing the condition of specific assets or 
components. 
While IoT covers a wide range of infrastructure elements, SHM's main focus is on ensuring the structural 
safety and durability of individual structures. By concentrating on real-time data from sensors, IoT 
provides a holistic view of infrastructure performance, whereas SHM zeroes in on the critical task of 
maintaining structural integrity. 
 

 
In the following, we will discuss more in detail about technologies for data collection sch as Remote 
sensing.  
Based on the data acquisition method, remote sensing technologies for infrastructure assessment can 
be classified into the following categories: Optical Remote Sensing, Aerial Photography, Satellite 
Imagery, Multispectral, Hyperspectral and Panchromatic Imaging. 
Synthetic Aperture Radar (SAR) imaging emitting microwave signals and measuring the reflected signals 
to create radar images; and Interferometric SAR (InSAR) measuring surface deformation by combining 
multiple SAR images. 
Light Detection and Ranging (LiDAR) technologies such as  Airborne, Spaceborne and Terrestrial LiDAR 
is emitting laser pulses and measuring the time it takes for the pulses to return after reflecting off objects 
to create highly accurate 3D models of infrastructure  
Thermal Imaging is capturing thermal energy emitted by objects to detect heat anomalies, energy loss, 
and temperature patterns; and Infrared (IR) Thermography capturing infrared radiation to identify heat 
signatures, insulation issues, and electrical problems. 
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Remote sensing employs three main types of platforms: ground-based, airborne, and spaceborne. 
Currently, UAVs are extensively used in ground-based platforms, functioning at altitudes between 10 and 
150 meters. Airborne platforms consist of helicopters, jet planes, and airplanes, which operate at 
altitudes from 0.3 to 12 kilometers. Spaceborne platforms involve sensors mounted on spacecraft or 
satellites that orbit the Earth, enabling them to capture images of the entire planet, typically operating at 
altitudes between 185 and 900 kilometers. As the platform's altitude increases, its coverage area 
expands, though this may result in a decrease in image quality. UAVs are particularly popular in the 
agricultural sector for a variety of remote sensing purposes. The types and operational heights of the 
different platforms used in remote sensing are detailed below. 
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Optical remote sensing technologies are invaluable for infrastructure inspection and assessment. Aerial 
photography, whether from manned aircraft or UAVs, delivers high-resolution images for detailed visual 
inspections. High-resolution satellite imagery offers a comprehensive bird's-eye view of infrastructure 
assets, enhancing large-scale monitoring.  
Multispectral and hyperspectral imaging (MSI & HSI) capture images across various spectral bands, 
including visible and near-infrared, revealing material properties and environmental conditions not 
visible to the naked eye. Additionally, panchromatic and high-resolution imagery provide detailed 
grayscale or color images with high spatial resolution, ideal for precise mapping and analysis of 
infrastructure components 
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Photogrammetry, a key technique within optical remote sensing, specializes in extracting precise 
geometric information from overlapping images. By analyzing photographs or digital images, 
photogrammetry determines the shape, position, size, and spatial properties of objects. Utilizing 
principles of triangulation and stereo vision, it reconstructs the 3D geometry of objects from multiple 
images taken from various angles. While optical remote sensing broadly includes various data 
acquisition technologies, photogrammetry hones in on the geometric analysis and measurement of 
objects and surfaces through optical images, making it essential for detailed spatial studies and 
accurate 3D modeling. 
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LiDAR (Light Detection and Ranging) operates by emitting laser light pulses and precisely timing how long 
they take to return after bouncing off the ground. It also measures the intensity of these reflections 
(“Lidar,” 2024). LiDAR employs oscillating mirrors to emit laser pulses in multiple directions, creating a 
"sheet" of light. By measuring the timing and intensity of the returning pulses, it can gather data on 
objects such as terrain and structures. 
 

 
 
 
LiDAR systems come in various forms, each suited to different applications, offering unique advantages 
in data collection and analysis. Airborne LiDAR systems, mounted on aircraft or helicopters, collect data 
over extensive areas, making them ideal for topographic mapping, environmental monitoring, and large-
scale surveys. For example, they can map forest canopies and coastal zones with high accuracy. 
Terrestrial LiDAR systems, stationed on the ground, capture detailed scans of the surrounding 
environment from fixed or mobile positions, providing high-resolution data for construction, urban 
planning, and heritage site documentation. Mobile LiDAR systems, attached to vehicles like cars, gather 
data while moving along road networks, using GPS for precise georeferencing. These systems are crucial 
for creating detailed maps of urban infrastructure and transportation networks. UAV-based LiDAR 
sensors, mounted on unmanned aerial vehicles, offer flexible and efficient data collection for smaller or 
hard-to-reach areas. They are particularly useful for inspecting power lines, monitoring agricultural 
fields, and surveying disaster-stricken areas. Each form of LiDAR system brings specific benefits, 
enhancing the precision and efficiency of spatial data collection across diverse applications. 
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LIDAR is a method based on laser technology and the measurement of rebounding light points. 
Photogrammetry employs an aligned series of digital images that overlap, as well as location data 
associated with pixels. 
LiDAR produces high-density point clouds with precise distance measurements, while  Photogrammetry 
can also generate 3D models, but its accuracy and point density depend on the quality of the images, 
camera calibration, and the number of overlapping images 
LiDAR signals can penetrate vegetation and other obstructions, making it suitable for mapping terrain 
and structures beneath dense vegetation canopies, while photogrammetry relies on visible images and 
cannot penetrate obstacles.  
LiDAR systems can be expensive to acquire and operate, especially for high-density data collection, 
while Photogrammetry can be a more cost-effective option, especially when utilizing existing aerial 
imagery or UAVs. 
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Visual inspections are the primary method for assessing infrastructure conditions, but they have several 
limitations. These inspections are often subjective, varying between inspectors and lacking 
reproducibility. Specific issues include the unsystematic recording and presentation of photographic 
evidence, making it challenging to compare photographs from different inspections and track defect 
conditions over time. Practices can differ significantly between regional inspection teams, leading to 
inconsistent defect identification and reliability. Additionally, the wide range of potential defect types 
can result in inaccurate classification. These challenges highlight the need for more standardized and 
objective methods to improve infrastructure condition assessments. 
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Digital inspection of structures is generally done within three steps. First step is utilizing optical sensing 
technologies for remote automated data acquisition. In the second step, data processing and inspection 
is conducted, and nowadays it's often supported using AI. Finally, in the third step, we can create digital 
models and continuously store, manage and analyze this collective data. 
 

 
 
In modern infrastructure assessment, advanced technologies play a crucial role. Artificial Intelligence 
(AI) enhances predictive analytics and decision-making. AI generally encompasses three areas, Machine 
learning, Computer Vison and Robotics.  Computer Vision automates visual data analysis for detecting 
structural anomalies. Machine Learning refines data analysis for precise predictions. Robotics automate 
physical inspections in hazardous areas. Building Information Modeling (BIM) integrates data into 
cohesive digital models for better planning and maintenance. The Internet of Things (IoT) provides real-
time monitoring and alerts, ensuring proactive infrastructure management and safe (Huang et al., 2021). 
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We have completed now our first activity on digital technologies and data types, talking about challenges 
as well as opportunities. At the end of this lecture you should reflect on how digitalization has 
transformed the design, construction and infrastructure. What are the different classes of digital 
technologies based on the application and scope? What are the most commonly used remote sensing 
technologies for the data and to reflect on your personal experience? What are the major challenges in 
assessing structural condition based on acquired data and what are the opportunities for the future and 
the areas you will be working on? To further leverage the power of digital technologies to improve the life 
cycle or the infrastructure. 
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Activity 2. Machine learning and Computer Vision for infrastructure lifecycle 
 

 
 
Within this activity we are going to answer following questions:  
What is machine learning, and how is it applied in infrastructure lifecycle? 
What is Computer Vision and how is it applied for infrastructure inspections?  
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With a profound history that can be traced back to 1952 when Arthur Samuel developed the first game-
playing program, machine learning was defined by the pioneer in 1959 as a “field of study that gives 
computers the ability to learn without being explicitly programmed” (Samuel, 1959). Machine learning 
algorithms are constructed to learn from data by automatically extracting patterns, with learning in this 
context defined by “a computer program is said to learn from experience E with respect to some class of 
tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with 
experience E.”(El Naqa and Murphy, 2015)  
 

 
 
Machine learning typically falls into three categories: supervised learning, where models are trained on 
labeled data; unsupervised learning, which identifies patterns in unlabeled data; and semi-supervised 
learning, which combines both labeled and unlabeled data to improve model performance and 
accuracy. There is a fourth category of machine learning: reinforcement learning. The environment is 
typically stated in the form of a Markov decision process (MDP) atter do not assume knowledge of an 
exact mathematical model of the MDP and they target large MDPs where exact methods become 
infeasible (“Markov decision process,” 2024). 
 

https://en.wikipedia.org/wiki/Markov_decision_process
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Supervised learning encompasses various algorithms designed to predict outcomes based on labeled 
data. Linear and Polynomial Regression are used for modeling relationships between variables. Support 
Vector Machines find optimal boundaries between classes. k-Nearest Neighbors classifies data based 
on proximity to known data points. Decision Trees make decisions through a tree-like model of choices. 
Neural Networks mimic brain function to handle complex patterns. Random Forest aggregates multiple 
decision trees for improved accuracy. Gaussian Processes use probabilistic methods to make 
predictions. Each algorithm offers unique strengths, making them suitable for different types of 
predictive tasks and data complexities (Cabrera et al., 2023). 
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A deep neural network consists of multiple hierarchical layers, with each non-linear hidden layer's 
output feeding into the next. This architecture enables the network to learn complex patterns and 
representations. Deep learning, a subset of machine learning, has advanced significantly in the past 
decade due to several key factors: advancements in hardware, especially GPU computing, 
improvements in algorithms, and the availability of extensive training datasets. These developments 
have collectively enhanced the capability of deep neural networks to perform sophisticated tasks, such 
as image and speech recognition, and drive progress in various fields, from artificial intelligence to data 
science. The error rates of top performers at the LSVRC on ImageNet (Russakovsky et al., 2015), with the 
corresponding neural network's depth. We observe that from 2014 to 2015 a relatively small 
improvement is attained given the considerable increase in the number of layers. 
 

 
 
Infrastructure datasets encompass various types of information crucial for managing assets effectively. 
Topology data, obtained from LIDAR, provides detailed spatial information. Network models from GIS 
offer insights into the layout and connectivity of infrastructure. BIM models from design teams deliver 
comprehensive building information. Sensor data, such as traffic and weather conditions, provides real-
time operational insights. Condition data from Pavement Management Systems tracks the state of road 
surfaces. Integrating these diverse datasets into a unified view enhances asset management by reducing 
costs and improving service quality, facilitating better decision-making and maintenance strategies 
(Corker et al., 2023). 
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Pavement datasets include LiDAR-derived roughness measurements (Corker et al., 2023), which assess 
surface irregularities, and detailed drainage information from LiDAR topological models. These datasets 
provide critical insights into pavement conditions and drainage patterns, aiding in accurate assessment 
and effective maintenance, planning, and road infrastructure. 
 

 
 
Asset management systems are crucial data sources for infrastructure management. For instance, the 
asset management database (Bush et al., 2021) offers extensive image and condition assessment data. 
The sown sample  includes 200,000 defect photographs (Mundt et al., 2019), amounting to 40GB of 
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information. Each image is tagged with one of 161 possible defect types, facilitating detailed analysis. 
Additionally, these defects are categorized into three super-classes—crack, corrosion, and spalling—to 
streamline classification and management processes. This structured approach enhances the ability to 
monitor, assess, and address infrastructure issues effectively, supporting better decision-making and 
maintenance strategies. 
 

 
 
Complex infrastructure projects such as tunneling rely on diverse data sources (Ninić et al., 2017) 
throughout their lifecycle. During the design phase, crucial data includes geological, geotechnical, and 
design information, which helps in planning and engineering. In the construction phase, operational 
parameters are meticulously recorded, along with monitoring tunneling-induced displacements to 
ensure stability. Operational data also encompasses inspection reports that provide condition 
assessments and visual documentation of the infrastructure. This comprehensive data collection and 
analysis are essential for managing the project's progress, addressing potential issues, and ensuring the 
overall safety and effectiveness of the tunneling operations. 
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Machine learning significantly enhances infrastructure management by performing various critical tasks. 
Detection of defects, damages, and anomalies is achieved through advanced algorithms that process 
real-time sensor data to identify degradation patterns, estimate remaining lifespan, and predict potential 
failures. Predictive maintenance uses historical data and ongoing monitoring to forecast when 
maintenance will be required, optimizing resource allocation and reducing downtime. Object detection 
and segmentation of image and video data facilitate accurate identification and classification of 
infrastructure components, defects, and changes. LiDAR data processing supports detailed 3D 
modeling and assessment of infrastructure, improving visualization and planning. Furthermore, 
machine learning aids in assessing environmental impacts by analyzing data on air quality, noise levels, 
and ecological changes. Material characterization helps determine material properties and detect 
defects, while risk assessments evaluate the infrastructure’s resilience to natural disasters and climate 
change, ensuring long-term safety and durability. 
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Convolutional Neural Networks (CNNs) are at the forefront of computer vision research, building on early 
architectures like LeNet (Lecun et al., 1998). While visualizing feature map channels is intuitive, it 
becomes unhandy for complex networks. The extruded squares representation has become a standard 
convention to simplify this visualization. Notably, three fully connected (fc) layers on the left side of the 
network are functionally equivalent to the last convolutional (conv) layer on the right, streamlining 
understanding and comparison. 
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The introduction of convolution was a transformative advancement in neural networks. It enabled the 
processing of image data in addition to tabular data. Convolution operates by applying a kernel—
essentially a small matrix—to each pixel position in the input layer. This process involves performing 
element-wise multiplication between the kernel and a region of the input image, then summing the 
results. The resulting value is then assigned to the corresponding pixel in the output layer. This method 
efficiently captures spatial hierarchies and patterns in images, making it a cornerstone of modern 
computer vision techniques and enhancing the capability of neural networks in image processing tasks. 
 

 
 
There are two common ML task that we can perform to learn form images: 

1. Multi-label prediction: Fully supervised learning tasks involve training models with labeled 
images to achieve high accuracy. For defect image classification, this approach enables precise 
identification of various defects by learning from annotated examples. 

2. Semantic segmentation:  In concrete crack image semantic segmentation, the model is trained 
to detect and segment cracks within images, classifying each pixel to delineate the cracks' exact 
boundaries. Both tasks require detailed, labeled datasets to ensure effective training and reliable 
performance in real-world applications. 
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Computer vision (CV) is an interdisciplinary scientific field concerned with the automatic extraction of 
useful information from image data in order to understand or represent the underlying physical world, 
either qualitatively or quantitatively. CV should not be confused with Image Processing, where the output 
is the enhanced or compressed input image, although no understanding of the scene is gained. 
In the image below on the expel of a bridge you can see how CV can be used for component detection 
and damage detection of bridges, but we will talk about this a bit more in detail, after we understand CV 
methods and tasks.  
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CV tasks in infrastructure inspection involve specific objectives aimed at extracting valuable information 
from visual data to facilitate automated analysis and understanding. These tasks are designed to 
address various inspection goals, such as detecting defects, assessing conditions, and identifying 
structural issues.  
The CV methods employed to achieve these tasks include a range of techniques and algorithms tailored 
to the type of data, structural complexity, and inspection needs. These methods vary widely, from simple 
image processing techniques to advanced machine learning algorithms, each chosen to optimize 
performance based on the specific requirements of the inspection process. 
 

 
 
CV tasks in infrastructure inspection involve several critical stages. Image acquisition uses general CV 
methods to capture visual data from various sources. Pre-processing improves image quality through 
techniques such as restoration, contrast enhancement, and noise reduction. Segmentation divides 
images into meaningful regions using methods like thresholding, edge detection, and clustering. Feature 
extraction identifies key attributes related to color, texture, shape, and motion. Object recognition 
classifies and locates materials or objects within the image. Finally, object analysis evaluates these 
identified objects to assess their condition and relevance, facilitating comprehensive infrastructure 
inspection and maintenance. 
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We can apply computer vision techniques in industrial settings. The first example, depicted in the top 
left image, illustrates image classification, where the system categorizes the image as depicting spalling. 
The second example, shown in the adjacent top image, demonstrates patch-wise classification. In this 
approach, the image is divided into smaller segments, and each segment is classified to determine 
whether it contains a crack. The third image on the top demonstrates object localization, where a 
bounding box is drawn around a detected crack, and the system estimates the probability of the 
presence of the crack, which, in this case, is determined to be 66%. In the lower left corner, we observe 
object localization using a heatmap. This technique allows us to visualize which parts of the image the 
neural network considers significant for classification. By visualizing the synaptic weights of a trained 
neural network, we can determine the regions responsible for the classification decision. Additionally, 
by utilizing a gradient-weighted class activation mapping (Grad-CAM) heatmap, we can precisely localize 
differences within the image. 
Next, the task of object detection is demonstrated, where the system is capable of identifying and 
detecting rebar within the image. Finally, the most complex task is semantic segmentation, which 
involves predicting labels for each pixel in the image. This pixel-wise classification identifies the specific 
class of each defect present in the image. 
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The traditional approach is to use well-established CV techniques such as feature descriptors (SIFT, 
SURF, BRIEF, etc.) for object detection. Before the emergence of DL, a step called feature extraction was 
carried out for tasks such as image classification. Features are small “interesting”, descriptive or 
informative patches in images. Several CV algorithms, such as edge detection, corner detection or 
threshold segmentation may be involved in this step. The development of CNNs has had a tremendous 
influence in the field of CV in recent years and is responsible for a big jump in the ability to recognize 
object. DL introduced the concept of end-to-end learning where the machine is just given a dataset of 
images which have been annotated with what classes of object are present in each image. Thereby a DL 
model is ‘trained’ on the given data, where neural networks discover the underlying patterns in classes 
of images and automatically works out the most descriptive and salient features with respect to each 
specific class of object for each object.  
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CV methods for infrastructure inspection involve several key techniques. Image filtering using Gaussian, 
Sobel, or Canny filters enhances edges, reduces noise, and highlights important features. Image 
registration aligns multiple images or frames to correct for differences in perspective or movement. 
Feature detection and matching identify key points, such as corners or edges, and track these across 
images to detect changes or movement. Object detection and tracking locate and monitor specific 
objects or defects in images or videos. Structural feature extraction identifies critical components like 
beams and columns for detailed analysis. Segmentation divides images into regions to isolate and 
examine specific parts, while texture analysis helps detect surface anomalies and signs of wear, 
providing crucial insights into the condition of infrastructure elements. 
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Computer vision for 3D reconstruction is a set of techniques and algorithms that aim to create three-
dimensional models of objects or scenes using multiple 2D images as input. This process is also known 
as "structure-from-motion" or "multi-view stereo.“ Feature extraction involves identifying key points, 
such as corners or edges, from each 2D image. These features serve as reference points for matching 
images. Feature matching establishes correspondences between features across different images using 
algorithms like nearest-neighbor or descriptor-based methods. Camera pose estimation determines the 
relative positions and orientations of cameras based on these correspondences, aligning images in 3D 
space. Triangulation calculates the 3D coordinates of matched points by intersecting rays traced back 
from each camera’s position. Bundle adjustment refines the 3D structure and camera poses by 
minimizing reprojection errors, considering calibration and noise. Finally, surface reconstruction 
processes the 3D points to create detailed surface representations, such as point clouds, meshes, or 
textured 3D models, depending on the application’s needs. 
Feature Extraction: Key points or features are extracted from each 2D image, such as corners, edges, or 
distinctive regions. These features serve as reference points for matching between images. 
Feature Matching: Correspondences between the features across different images are established to 
identify the same points in multiple views. Various matching algorithms, such as nearest-neighbor or 
feature descriptor-based methods, are used for this purpose. 
Camera Pose Estimation: The relative camera poses (positions and orientations) between the images 
are estimated based on the correspondences found in the previous step. This step determines how each 
image is related to the others in 3D space. 
Triangulation: The 3D coordinates of the matched points are calculated using triangulation techniques. 
By intersecting the rays traced back from each camera's position through the matched points, their 3D 
positions are estimated. 
Bundle Adjustment: An optimization process called bundle adjustment is performed to refine the 3D 
structure and camera poses. This step minimizes the reprojection errors between the 3D points and their 
corresponding 2D image projections, taking into account factors like camera calibration and noise. 
Surface Reconstruction: Depending on the application and level of detail needed, the 3D points can be 
further processed to generate a 3D surface representation, such as a point cloud, a mesh, or a textured 
3D model. 
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Semantic segmentation methods, like U-Net and FCN (Fully Convolutional Networks), CNN, can 
segment the images at the pixel level and classify each pixel into different classes. Instance 
segmentation techniques, such as Mask R-CNN, extend semantic segmentation to differentiate 
individual instances of objects within the same class. This is useful for distinguishing multiple 
occurrences of similar defects or components. Image processing and machine learning techniques 
analyze visual data to detect defects, damages, or anomalies in structures. This process can be divided 
into three main tasks: defect classification to identify the type of defect, quantifying defect extent to 
measure severity, and tracking defect propagation to monitor changes over time. 
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Defect classification involves various computer vision tasks to accurately identify and categorize 
structural issues. Image classification assigns labels to entire images based on observed defects. 
Object detection locates and identifies specific defect areas within images. Meta-learning enhances 
defect classification by enabling models to learn and adapt from a variety of defect types and scenarios. 
These tasks collectively improve the precision and efficiency of detecting and classifying defects in 
infrastructure. 
 

 
 
Semantic segmentation is a sophisticated computer vision task that surpasses image classification and 
object detection in complexity. It involves classifying each pixel in an image into one of a predefined set 
of classes, resulting in a segmented image where every segment is labeled accordingly. This detailed 
pixel-level classification is particularly valuable in damage detection, as it allows for precise delineation 
of both the location and shape of structural damage. By segmenting images at such a granular level, 
semantic segmentation enables accurate and comprehensive analysis, facilitating effective 
identification and assessment of damage in various infrastructure components. 
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Machine learning can also be utilized for component recognition, specifically for identifying structural 
components. Structural component recognition involves detecting, localizing, and classifying 
characteristic parts of structures. In the image below, the original image is shown alongside segmented 
components, each of which has been architected. It is anticipated that the development of building 
blocks for autonomous navigation and data collection algorithms for robotic platforms will occur in the 
future. This development will likely incorporate heuristic methods. Additionally, learning-based 
recognition can be applied to 3D point cloud data, enhancing the accuracy and efficiency of structural 
component recognition. 
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ChatGPT, a typical example of a large language model trained on extensive datasets with a vast number 
of parameters. Similarly, a large vision model operates on the same principle but is designed for image-
related tasks. Today, we introduce a typical representative of a large vision model: the Segment Anything 
Model (SAM). SAM (Kirillov et al., 2023) is trained on the largest existing image segmentation dataset. 
When a user provides the model with any unseen image along with a prompt, such as a moving point, the 
required mask can be generated clearly and immediately. 
Large vision models demonstrate exceptional performance in various computer vision tasks. It is worth 
integrating these advanced methods into the field of Structural Health Monitoring (SHM) to significantly 
enhance the resilience of structural systems. 
 

 
 
Traditional visual inspections of structural surface defects are labour-intensive, time-consuming, and 
subjective. Therefore, automation is crucial for increasing productivity.  Basic architecture of SAM 
(Kirillov et al., 2023) is here; however, SAM can only do segmentation and only for common objects not 
for our tasks, no sematic information, and requires prompt to let model carry out. So, our aim is to 
propose an automatically framework for structural surface defect detection based on SAM. 
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SAMcan detect bridge components by segmenting images into distinct regions, identifying and 
classifying parts like beams, joints, and cables. This enables precise analysis and monitoring of bridge 
infrastructure through detailed, component-level segmentation. 
SAM can be utilized for bridge condition detection by segmenting images to identify and classify 
components  (Ye, Z at al., 2024). It then analyzes these segments to assess the condition of each part, 
detecting any damage or deterioration for accurate and efficient maintenance planning 
 

 
 
CV methods are increasingly applied to inspection and analysis, leveraging advanced technologies for 
comprehensive evaluations. LiDAR or UAV-based image acquisition captures high-resolution data of 
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structures, providing detailed visual and spatial information. Object detection algorithms identify and 
locate key bridge components, such as beams and joints, within the acquired images. Object grouping 
and model reconstruction techniques then aggregate these detected components to create accurate 3D 
models of the bridge. Finally, condition detection analyzes these models to assess the structural health 
and identify defects or wear, enabling timely maintenance and ensuring safety. 
 

 
 
Digital photographs from visual bridge inspections are often captured from various angles, making it 
challenging to quantify and compare defects without pixel-wise correspondence between images. 
Change detection algorithms address this issue by comparing images taken at different times to highlight 
structural changes or defects. CV image registration algorithms are employed to identify matching key 
points across image pairs (Bush et al., 2022), ensuring accurate alignment. RANdom SAmple Consensus 
(RANSAC) is then used to filter outliers from these matched key points, enhancing the reliability of the 
change detection process. This combination of techniques enables automated, objective analysis of 
bridge condition over time. 
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This helps in monitoring the progression of defects or damages over time (Bush et al., 2022). Tracking 
defect propagation involves several steps: key point matching aligns features across images, 
transformation adjusts for perspective changes, and overlay superimposes images to compare defect 
locations. Change heatmaps visualize and quantify defect growth, highlighting areas of increased 
damage over time for effective monitoring and analysis. 
 

 
 

Activity 3: Building information modelling and Digital Twins 
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The aim of this lecture is to learn about fundamentals of Building Information Modelling (BIM) and its 
application for digital modelling of infrastructure. We will also discuss different between BIM and digital 
twins and how BIM could evolve to digital twin.  
 

 
 
Building Information Modelling (BIM) is defined in two key ways. According to BS EN ISO 19650-2: 2018, 
BIM is “the process of designing, constructing, or operating a building or infrastructure asset using 
electronic object-oriented information.” This definition emphasizes BIM's role in managing and utilizing 
digital data throughout the asset's lifecycle.  
Alternatively, the NBIMS-US™ describes BIM as “a digital representation of physical and functional 
characteristics of a facility.” This definition highlights BIM as a shared knowledge resource that provides 
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a reliable basis for decision-making from the earliest conception through to demolition. Both definitions 
underscore BIM’s integral role in comprehensive facility management. (BS EN ISO 19650-2: 2018) 
 

 
 
Building Information Modelling (BIM) encompasses more than just the creation of digital models of 
physical structures; it fundamentally involves the verb “to build,” applying to a process of continuously 
building models and all assets in the built environment, such as tunnels and roads, not just buildings. 
“Information” in BIM emphasizes the sharing of structured data, including both geometric aspects and 
non-geometric details like time, cost, and fire ratings. This broadens BIM’s scope beyond mere 3D 
visualization. “Modelling” in BIM refers to the comprehensive representation of systems or processes, 
rather than just creating 3D models of objects. While geometric representation is crucial, BIM’s true 
value lies in its ability to simulate various design facets—structural, architectural, and building 
services—alongside the construction and operational phases of an asset. This holistic approach 
ensures detailed, accurate, and useful simulations throughout the asset's lifecycle. 
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Traditional construction project information exchange relies on physical documents, such as blueprints 
and reports, and face-to-face meetings. Information is often communicated through hard copies, faxes, 
and emails, leading to potential delays and inefficiencies. Coordination among stakeholders can be 
fragmented, impacting project accuracy and timelines. 
 

 
Information loss in construction projects occurs when in the transition between project phases and 
between stakeholders (Borrmann et al., 2018). Delays in communication, incomplete data transfer, or 
missed updates can lead to errors, misunderstandings, and inefficiencies. This loss hampers decision-
making, coordination, and project progress, ultimately affecting quality, cost, and timelines. 
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In the McLeamy Curve, traditional BIM workflows often start with limited information during early design 
stages, gradually improving as the project progresses. Initially, detailed design data is sparse, but as the 
project advances, data becomes richer and more accurate, enhancing decision-making and reducing 
errors during later stages. 
 

 
 
The McLeamy Curve illustrates how the value of design decisions and the cost of changes evolve 
throughout a project. In BIM workflows, early stages involve broad, less detailed models, leading to 



HORIZON-MSCA-2021-SE-ReCharged-101086413 

 
5-50 

limited accuracy and higher flexibility. As the project progresses, BIM models become more detailed and 
accurate, improving decision-making and reducing the cost of changes. Initially, design changes are 
easier and cheaper to implement, but as the project advances, modifications become more costly and 
complex. By leveraging BIM’s iterative capabilities, teams can make informed decisions early on, 
ultimately enhancing efficiency and reducing overall project costs. 
 

 
 
BIM offers several key benefits. Cost reduction is achieved through improved accuracy in planning and 
resource management, minimizing unexpected expenses. CO2 reduction results from optimized 
designs that enhance energy efficiency and reduce waste. BIM facilitates easy exploration of scenarios 
during the early design phase, enabling the evaluation of different design options. It also supports 
exploration of resilience scenarios to assess responses to human or natural hazards, aiding in both 
reactive and proactive strategies. This capability enhances adaptation and recovery, ensuring that 
structures can be better prepared for and recover from potential disruptions. 
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In BIM collaborative project development, BIM serves as a central repository for all project data, fostering 
seamless teamwork among stakeholders. This centralized model integrates information from various 
disciplines—architectural, structural, and MEP—into a single digital platform. By consolidating data, 
BIM ensures that every team member has access to up-to-date, accurate information, promoting 
efficient communication and coordination. This collaborative approach enables real-time updates, 
reduces conflicts, and enhances decision-making throughout the project lifecycle. It facilitates shared 
understanding, streamlined workflows, and better management of project changes, ultimately leading 
to improved project outcomes and more effective problem-solving. 
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BIM enhances lifecycle processes by providing a comprehensive digital representation of a building or 
infrastructure asset throughout its entire lifespan (Borrmann et al., 2018). From initial design to 
construction, operation, maintenance, and eventual demolition, BIM integrates and manages all 
relevant data in a single model. This continuous access to up-to-date information supports efficient 
planning and coordination, reduces errors, and optimizes resource use. During operation and 
maintenance, BIM aids in tracking asset performance, scheduling repairs, and managing renovations. 
By facilitating data-driven decision-making and streamlining workflows, BIM ensures that the asset’s 
lifecycle is managed effectively, leading to improved performance and cost savings. 
 

 
 
A BIM model integrates graphical data (3D visual representations of building elements), non-graphical 
data (attributes like material properties, costs, and performance metrics), and documents (such as 
drawings, specifications, and reports). This comprehensive combination provides a holistic view of the 
asset for effective management and analysis. 
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Graphical Data in BIM involves geometric modeling to define the shape of infrastructure components. 
This includes determining their volume, surface area, and spatial relationships. It answers questions 
about the component's dimensions and whether it interacts or collides with other elements within the 
model. This graphical representation ensures precise design and spatial coordination throughout the 
project. 
 

 
 
Non-Graphical Data in BIM (Koch et al., 2017) focuses on semantic modeling, which involves defining 
the type of each component and its properties, such as material. It also examines the relationships 
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between components, detailing how they interact or connect with one another. This data provides 
essential context and functionality beyond the visual aspects, ensuring a comprehensive understanding 
of the asset's characteristics and their implications for design and operation. 
 

 
 
Documents in BIM encompass essential static information, typically provided in PDF format. This 
includes specifications outlining detailed requirements, reports summarizing project findings or 
progress, and historical record drawings capturing the as-built conditions and modifications over time. 
These documents complement the dynamic BIM model, offering critical insights and records that 
support comprehensive project management and historical reference throughout the asset's lifecycle. 
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CAD (Computer-Aided Design) and BIM serve distinct purposes in design and construction. CAD focuses 
on creating detailed 2D drawings and 3D models, often representing individual components without 
integrating their context or relationships. It’s akin to drafting or “paining” precise architectural plans. In 
contrast, BIM is like building with LEGO blocks, where each component is a detailed, intelligent object 
with embedded information about its properties, functions, and relationships. BIM integrates all project 
data into a unified model, facilitating collaboration, visualization, and lifecycle management. While CAD 
excels in detailed drawing, BIM enhances coordination and efficiency across the entire project. 
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A BIM object is a multifaceted entity encompassing various types of information. It includes geometry, 
which defines the object’s physical shape and dimensions. Material properties, such as stiffness, 
density, and cohesion, detail the object's physical attributes and behavior. Visualization data provides a 
realistic appearance, making the object easily recognizable within the model. Additionally, functional 
data, like detection zones, ensures the object is positioned and operates correctly within the overall 
system. This comprehensive integration of data allows BIM objects to serve as intelligent components 
within a unified digital model, enhancing both design accuracy and operational efficiency. 
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In parametric design, each object class in a BIM model is defined by parameters or variables, such as 
distance, angles, and relational rules like ‘attached to’ or ‘parallel to’. Designers create instances of 
objects within the model by specifying these parameters. When a parameter changes, the model 
automatically updates all dependent parameters, ensuring consistency and accuracy throughout the 
design. This dynamic approach streamlines modifications and enhances the overall efficiency of the 
design process. 
 

 
 
The lining segments are precast elements that are installed through an erector during the standstill of 
the TBM in a lining ring to ensure the tunnel stability behind the shield (Ninic et al., 2020b).  The geometry 
of the entire ring and its individual segments as well as the arrangement of the joints must be designed 
such that the can be easily moulded. In order to enable a modular segment production, the solution is 
to employ so-called universal rings. Tapered geometry of the universal ring and main geometrical 
parameters. (b) Alignment of subsequent rings is determined by means of rotation angle. In BIM we can 
create libraries of classes of these elements. These components will be fully parametric. Then we can 
implement algorithms to automatically import objects (instances of the class) with assign parameters 
and establish intelligent relationships between objects to carte rings in a way that they are perfectly 
aligned  to any arbitrary tunnel trace.  

https://www.sciencedirect.com/topics/engineering/precast-element
https://www.sciencedirect.com/topics/computer-science/individual-segment
https://www.sciencedirect.com/topics/engineering/joints-structural-components
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BIM is not simply a model with 3D data lacking detailed object attributes. It is not a static model without 
parametric capabilities, which means it cannot adjust to changes dynamically. BIM is also not a 
collection of separate 2D CAD files that need manual integration to define a building. Additionally, BIM 
does not involve models where changes to dimensions in one view are not automatically updated across 
all other views. Unlike these limitations, BIM integrates comprehensive data, supports dynamic 
adjustments through parametric modeling, and ensures consistency across different views and 
elements within the project. 
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Building a BIM model independently using software like Autodesk and generating 2D drawings from it, 
often referred to as Level 1 BIM or ‘LonelyBIM’, offers valuable insights for analyzing a building. However, 
this approach does not fully embrace the collaborative essence of BIM. Level 2 BIM, or ‘Federated 
Model’, represents the true spirit of BIM. It involves integrating models from various disciplines into a 
single, comprehensive model, fostering collaboration and ensuring that all aspects of the project are 
synchronized. This federated approach enhances coordination, reduces conflicts, and maximizes the 
overall effectiveness and efficiency of the project. 
 

 
 
The federated BIM model for tunneling is a digital assembly created by integrating federating 
components into a cohesive model (Koch et al., 2017). It combines the detailed City model, capturing 
surface geography and infrastructure; the Tunnel Lining model, depicting precise structural elements 
and material specifications; and the TBM (Tunnel Boring Machine) model, illustrating operational details 
and machinery layout. This merged Building Information Model enhances coordination, allowing for 
seamless visualization and analysis. By unifying these distinct models, engineers and planners can more 
effectively manage the tunneling project, ensuring that each element aligns perfectly within the broader 
urban context. 
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“a Digital Twin is an exact digital replica of a construction project or asset” (Wiki). But DTs are virtual 
replicas of real-world physical products or systems. DTs integrate data with 3D digital model 
representation, Machine Learning (ML), AI and Data Science to create living transdisciplinary simulations 
that update and change in real-time with changes of the physical counterpart over the whole lifecycle. 
They are then employed for optimising processes, supporting decision making, virtual control, and 
analysis. 
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Digital Twins (DTs) are multi-layered systems encompassing several key components. The Physical Layer 
represents the real-world object or system, while the Data Transfer, Storage, and Management Layer 
handles the flow and organization of information. The Modelling Layer interprets and simulates the 
physical entity, and the Application Layer uses this data to drive insights and decision-making. Building 
Information Modeling (BIM) can function as either a subset of the DT, providing detailed models of 
structures, or as a method to achieve a Digital Twin by offering a dynamic, data-rich representation of 
the physical asset, enhancing real-time analysis and management. 
 

 
 
Transitioning from BIM to a Digital Twin involves progressive enhancements in functionality and 
interactivity. At Level 1, BIM serves as a static 3D visualization tool, providing basic project 
representations. Moving to Level 2, BIM supports simulations based on static information, enabling 
deeper analysis of design aspects. Level 3 integrates BIM with IoT, incorporating real-time sensor data 
to reflect current conditions. At Level 4, real-time predictions are made possible through advanced 
algorithms, aiding in proactive decision-making. Finally, Level 5 represents the Digital Twin, a fully 
dynamic and interactive model that continuously updates and evolves with real-world changes, offering 
comprehensive insights and management capabilities. 
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All the function of Level 1-4 are including, and enables with an intelligent feedback control system to 
automatically take actions based on optimized results and control strategies: Visualization of real-time 
built environment data; Predictions based on dynamic building information associated with real-time 
data sensing to support decision making; Automatic control feedback with optimized management 
strategies to introduce interventions in the built environment. 
 

 
 
BIM applications extend beyond static models to include integration with numerical modeling for precise 
simulations, support for sustainability assessments to evaluate environmental impacts, and the 
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creation of Digital Twin prototypes for real-time updates and enhanced management. These applications 
enable more informed decisions and efficient project lifecycle management. 
 

 
 
Integrating BIM with numerical models in design-to-design workflows presents several challenges. 
Numerical software often lacks standardized formats for geometry, complicating data exchange and 
consistency. Boundary conditions, crucial for accurate simulations, must be meticulously defined and 
applied to ensure model accuracy. Mesh generation, the process of subdividing the model for analysis, 
can be complex and time-consuming, requiring careful adjustment to balance detail and computational 
efficiency. Additionally, post-processing of results is essential for interpreting and validating simulation 
outcomes. Addressing these challenges requires robust integration strategies to streamline data 
transfer, enhance model accuracy, and facilitate effective analysis across platforms. 
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However, integrating BIM with numerical software also presents significant opportunities for advancing 
design and analysis (Ninic et al., 2020a). Adopting interoperability principles can bridge gaps between 
disparate systems, ensuring seamless data exchange and consistency. Embracing open-source 
platforms offers access to advanced methods like Isogeometric Analysis (IGA) and CutFEM, which 
enhance the precision and flexibility of simulations. IGA leverages smooth geometric representations 
from BIM for more accurate analysis, while CutFEM handles complex geometries and boundary 
conditions effectively. These integrations can streamline workflows, improve model accuracy, and 
foster innovation by combining the rich detail of BIM with the computational power of modern numerical 
techniques. 
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This video shows a workflow that fully automates the entire process, from model generation and 
numerical simulation export to result visualization, ensuring seamless and efficient operations without 
manual intervention. 
 

 
 
In the context of a City BIM model, opportunities arise for automating workflows that streamline the 
entire process. This includes fully automatic generation of the city model, seamless export, execution of 
numerical simulations, and visualization of results. This approach allows us to run scenarios and analyze 
the impact of tunneling on buildings, providing valuable insights into potential effects and facilitating 
better planning and decision-making. 
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Digital twin-enabled framework for integrating digitalisation, functionality and sustainability of 
underground station. BIM-based multi-Level of Development (LoD) parametric modeling facilitates 
detailed design, analysis  and visualization of prefabricated metro stations, allowing for precise planning 
and execution (Huang et al., 2023). Explicit parametric relationships and constraints enable adaptive 
designs that can evolve with project needs. An emphasis on upfront carbon assessment, measured in 
kgCO2e, ensures sustainability by evaluating the minimum life cycle scope of embodied carbon. 
Integrating embodied carbon assessment with prefabricated construction feasibility further enhances 
this approach, promoting efficient, eco-friendly solutions and reducing overall environmental impact. 
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Sustainability assessment now features automatic scenario exploration, evaluating total embodied 
carbon and its component-wise contributions across five parametric models. This approach provides 
insights into the environmental impact of different design variations, facilitating more informed 
decisions to enhance sustainability in construction projects. The pie charts show A1-A5 embodied 
carbon and their proportionate contributions, with colors representing component markups, across five 
parametric models (I, II, III, IV, and V) all with a fixed total width of 25 m. These models vary in total height, 
lining thickness, interior features, and steel reinforcement ratio. For each comparison, the parameter 
being altered is highlighted between the different design variations (Huang et al., 2023). 
 

 
 
At last, at the end of this activity, you should reflect on BIM as a digital representation of a assets's 
physical and functional characteristics. How BIM and Digital Twins are related?  Reflect on the current 
trends in BIM and Digital Twins. Furthermore, reflect on your experience with BIM, consider how 
leveraging these technologies can streamline project management, improve collaboration, and optimize 
maintenance processes. By how by adopting BIM and Digital Twins, you can enhance efficiency, 
accuracy, and decision-making in your future infrastructure projects. 
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