

Climate-aware Resilience for Sustainable Critical and Interdependent Infrastructure Systems enhanced by emerging Digital Technologies

Massive Open Online Course: **Resilience, Sustainability & Digitalisation in Critical Infrastructure**

This project has received funding from the Horizon Europe Programme under the Marie Skłodowska-Curie Staff Exchanges Action (GA no. 101086413). Co-funded by the UK Research & Innovation, and the Swiss State Secretariat for Education, Research & Innovation.

hweizerische Eidgenossenschaft onfederazione Svizzera Confederaziun svizra

Lecture 7 Massive Open Online Course Resilience, Sustainability & Digitalisation in Critical Infrastructure

Proactive and reactive adaptation strategies, Nature based Solutions and Stress-testing

Dr Stergios-Aristoteles Mitoulis

Scientific Manager of ReCharged Head of Structures & Associate Professor University of Birmingham S.A.Mitoulis@Bham.ac.uk

UNIVERSITYOF

BIRMINGHAM

- Proactive and reactive adaptation measures
- Resilience and sustainability stress-testing
- Nature Based Solutions
- Application on transport assets and comparisons of adaptation measures for extreme stressors that are caused by climate projections

ACTIVITY 1: Proactive and reactive adaptation measures

- Types of proactive and reactive adaptation measures
- Making the case for proactive climate adaptation
- Examples

Types of proactive and reactive adaptation measures

Adaptation strategies - Bridges

<i>R</i> :	= P(H)	P(E H)	$P(D E \cap H)$. C(D)
Description	Hazard: The probability of a climatic hazard (e.g. increased storm activity)	Exposure: The probability of an adverse impact on the bridge as a result of the hazard (e.g. increased storm surge heights)	Vulnerability: The probability of a damage resulting from the increased hazard and exposure	Consequences: The consequences of such a damage
Possible risk management measures	Reduction of GHG emissions (by e.g., introducing more strict regulations, reducing VMT through land use and urban planning strategies, etc.)	Regional adaptation measures, e.g.: • Storm surge barriers • Improved land use planning (e.g. relocation)	 Local adaptation measures, e.g.: Increase bridge elevation Insert holes in the bridge superstructure Improve span continuity Use tic-down, restrainers, or anchorage bars 	 Adaptation measures for reducing cascading effects: Increase robustness Increase network redundancy Improved emergency planning and disaster preparedness Improved understanding of the interdependencies between different infrastructure
	Climate change mitigation	4	Climate change adaptati	on

source: Nasr et al., 2020

Types of proactive and reactive adaptation measures

Adaptation strategies - Bridges

Climate hazard	Adaptation
Floods	Relocation or flood-proofing (Mehrotra et al., <u>2011</u> ; Meyer & Weigel, <u>2011</u>); Flood control seawalls, dikes, and levees (Stewart & Deng, <u>2015</u>); Elevation of bridges, strengthening and heightening of existing levees, increase in real-time monitoring of flood levels, restriction of most vulnerable coastal areas from further development, increase insurance rates to help restrict development (NRC, <u>2008</u>); Channel alteration and stabilization, diversion and storage of floodwaters (e.g., Dunne, <u>1988</u>); Regulate the flow of water through dams (Batchabani, Sormain, & Fuamba, <u>2016</u>)
Storms	Elevate critical infrastructures, insert holes, tie-down, restrainers, anchorage bars, etc., concrete shear tabs etc., connect adjacent spans, cladding (e.g., toe nails, hurricane straps, etc.) (Mondoro et al., <u>2018</u>); Strengthened connections, improved span continuity, modified bridge shape, increased elevation (Cleary, Webb, Douglass, Buhring, & Steward, <u>2018</u>); Relocation and restriction of development in vulnerable regions (Meyer & Weigel, <u>2011</u> ; NRC, <u>2008</u>); Strengthening and heightening existing storm surge barriers and building new ones (NRC, <u>2008</u>)
Wildfires	Vulnerability assessments incorporated into infrastructure location decisions, use of fire-resistant materials and landscaping (Meyer & Weigel, 2011); Installing monitoring systems, installing on site firefighting equipment, implementing structural fire design for bridges, fire proofing main structural elements (Naser & Kodur, 2015); Vegetation management strategies (i.e. control operating situation around the structure by regularly removing vegetation in the vicinity of bridges) (NRC, 2008; Wright, Lattimer, Woodworth, Nahid, & Sotelino, 2013); Bigger expansion gaps, passive fire protection, active fire suppression (e.g. wet pipe water systems, dry pipe water systems, total flooding agents, foam deluge systems) (Wright et al., 2013)

Making the case for proactive climate adaptation

Proactive (ex-ante) vs. reactive (ex-post) and comparisons strategies

Making the case for proactive climate adaptation

Proactive (ex-ante) vs. reactive (ex-post) and comparisons strategies

Time

The landmark Polyfytos Bridge

Figure 1. The landmark Polyfytos Bridge: (a) Polyfytos bridge wider area (b) focus area (as obtained by Google Maps 2020), and c) panoramic view of the asset with the precast spans (direction Kozani-North to Servia-South) and the long spans with the cantilevers in guestion at the bottom right side of the photograph.

- Curved viaduct with a mixed structural system
- Location : 40°14′04.1″N 21°58′17.2″E
- Function: Crosding the artificial Polyfytos lake and
- connects the city of Kozani, West Macedonia, main producer of energy production in Greece
- Connects Kozani to the Capital, Athens
- Designer: Prof. Riccardo Morandi
- Completed in 1975
- The second longest bridge in South-East Europe ۰

The landmark Polyfytos Bridge

Description of the landmark Polyfytos Bridge

Construction method for the Polyfytos Bridge

Prestressing is used both in the cantilevers and in the precast beams

Construction method for the Polyfytos Bridge

Prestressing is used both in the cantilevers and in the precast beams

Deterioration of the Polyfytos Bridge

Potential failure mechanisms

BIRMINGHAM

Potential failure mechanisms

Pathology – deformation of the cantilevers

Pathology – deformation of the cantilevers

Pathology – Extensive structural damage, cracking and half-joint deterioration

Adaptation scenarios: Scenario #0: Keep as is with light local interventions

Intervention on the most critical half joint

Adaptation scenarios:

Scenario #1: demolition of the deck and reconstruction as originally, with prestressed concrete beams

Scenario #2: Keep cantilevers as is and installation of new external prestressing cables. Restoration of halfjoints. Replacement of prestressed concrete beams with steel beams and continuity slab

Adaptation scenarios:

Scenario #3: Demolition of the deck and reconstruction with steel beams and continuity slab Scenario #4: Construction of pier extensions over the existing piers, installation of stays to support the existing cantilevers. Rehabilitation of half-joints and replacement of prestressed concrete beams with steel beams and continuity slab

Adaptation scenarios:

Scenario #5: Keep existing cantilevers and beams and install new external prestressing cables. Rehabilitate the slab and the half-joints Scenario #6: Solution with precast segments and dry joints

- Types of Nature based Solutions (NbS)
- Examples
- Application

Nature based Solutions (NbS) and types

Nature-based solutions are actions to protect, sustainably manage, or restore natural ecosystems, that address societal challenges such as climate change, human health, food and water security, and disaster risk reduction effectively and adaptively, simultaneously providing human well-being and biodiversity benefits.

For example, a common problem is the **flooding** in coastal areas that occurs as a result of storm surges and coastal erosion. This challenge, traditionally tackled with manmade **(grey) infrastructure** such as sea walls or dikes, coastal flooding, can also be addressed by actions that take advantage of ecosystem services such as tree planting. **Planting trees** that thrive in coastal areas – known as mangroves -- reduces the impact of storms on human lives and economic assets, and provides a habitat for fish, birds and other plants supporting biodiversity.

Source: https://www.worldbank.org

Nature based Solutions (NbS) and types

harged

Five categories of ecosystem-based approaches

Ecological Restoration (ER); Ecological Engineering (EE); Forest Landscape Restoration (FLR);

Ecosystem-based Adaptation (EbA); Ecosystem-based Mitigation (EbM); Climate Adaptation Services (CAS); Ecosystem-based Disaster Risk Reduction (Eco-DRR);

Natural Infrastructure (NI); Green Infrastructure (GI);

Ecosystem-based Management (EbMgt);

Area-based Conservation (AbC).

Societal challenges: climate change, food security, water security, disaster risk, human health, and social and economic development.

Source: Cohen-Shachamet al. (2019) https://www.sciencedirect.com/science/article/pii/S1462901118306671

NbS principles for infrastructure protection

- NbS embrace **nature conservation norms** (and principles)
- NbS are determined by **site-specific natural and cultural contexts** that include traditional, local and scientific knowledge.
- NbS are applied at a landscape scale.
- NbS are an integral part of the overall design of policies

Source: Cohen-Shachamet al. (2019) https://www.sciencedirect.com/science/article/pii/S1462901118306671

Types of NbS

The benefits of flood reduction to coastal highway resilience include the following:

- Decreased road or lane closures during flood events.
- Reduced road pavement damage.
- Reduced damage to bridges.
- Reduced erosion of roadway embankments.
- Decreased vulnerability to shoreline retreat.

Source:

Webb et al. (2019) 'NATURE-BASED SOLUTIONS FOR COASTAL HIGHWAY RESILIENCE: AN IMPLEMENTATION GUIDE'

https://www.fhwa.dot.gov/environment/sustainability/resili ence/ongoing_and_current_research/green_infrastructure/i mplementation_guide/fhwahep19042.pdf

KEY High: Significant benefit Medium: Some benefit Low: Minimal benefit None: No benefit		Risk-Reduction Benefit			Multiple	Resilience		
		Flooding	Wave Attenuation	Erosion	Benefits ¹	Adaptive Capacity ²		
	-uo al)	Acquisition	High	High	High	High	High	
	icy (Ne uctura	Retrofit	High	Low	Low	Low	Low	
	Poli Str	Land-Use Mgmt.	Medium	None	None	High	Medium	Ris
		Floodwalls and Levees	High	Low	None	Low	Low	per res stra
RESILIENCE MANAGEMENT STRATEGY Nature-Reced Solutions Structural	Structural	Storm Surge Barriers	High	Medium	None	Low	Low	
		Seawalls and Revetments	Low	High	High	Low	Low	
	Nature-Based Solutions	Beach Restoration (nourishment, dunes)	High	High	Medium	High	High	
		Beach and Breakwaters	High	High	High	High	Medium	
		Living Shorelines	Low	Medium	Medium	High	High	
		Reefs	Low	Medium	Medium	High	High	
		Marshes/ Mangroves	Low	Medium	Medium	High	High	
		Maritime Forests	High	Medium	Medium	High	High	

¹ Multiple benefits include socioeconomic contributions to human health and welfare above and beyond flood-reduction benefits, such as recreation, habitat, and water quality improvements.

² Measure of a strategy's ability to adjust to changing conditions and forces through natural processes, operation and maintenance, and/or adaptive management.

Example: Coastal protection - a constructed marsh with breakwaters

Source:

Webb et al. (2019) 'NATURE-BASED SOLUTIONS FOR COASTAL HIGHWAY RESILIENCE: AN IMPLEMENTATION GUIDE'

https://www.fhwa.dot.gov/environment/sustainability/resilience/ongoing_and_current_research/green_infrastructure/implementation_guide/fhwahep19042.pdf

Example: green bridge

Source: https://www.manchestereveningnews.co.uk/news/greater-manchester-news/stunning-green-bridge-designed-help-14169472

Example: Urban green roofs

Benefits:

- Reduced and delayed stormwater runoff
- Enhanced groundwater
- Storm water pollutant reductions
- Fewer sewer overflow events
- Increased carbon sequestration
- Urban heat island (UHI) mitigation and lower energy demands
- Improved air quality
- Additional wildlife habitats and recreational space
- Better human health
- Higher land values

Source: <u>https://blog.urbanscape-architecture.com/why-does-urban-green-infrastructure-matter</u>

ACTIVITY 3: Resilience and sustainability stress-testing

- Risk assessment and stress testing
- Challenges of stress testing
- Methodology to rank stress tests
- Case study: Road network in Switzerland subject to flooding

Risk assessment

. . .

- Three main tasks
 - Identifying input factors, e.g., hazard intensity, asset exposure and vulnerability
 - Defining risk measures, e.g., [average] costs of restoration
 - Implementing a risk model, which connects input factors to risk measure
- Probabilistic Risk Analysis (PRA) using scenario development (simulation)
 - Modelling uncertainties, e.g., using random variables, and probabilistic models
 - Generating a host of random scenarios (realizations of the system)
 - Quantifying risk measure using probability distribution of outputs

Unconditioned probabilistic analysis: All possible realizations of the system

- All potentially occurring events
- All possible ranges of assets behaviour

Limitation

 Identifying and explicitly assessing risks under stressed situations
 [part(s) of the system is worse than its expected realizations, due to Stressor]

Stress testing for Transport Systems

• Definition: (Agreed by the Group of Experts at UNECE)

"A stress test is a set of one or more <u>hypothetical scenarios</u> designed to help determine if a transport system can continue to provide an acceptable level of service when subjected to one or more potentially disruptive events"

• <u>Hypothetical scenarios</u>

"situations where at least one uncertainty in the system, because of a stressor, is having significantly **more unfavorable values than expected**"

Methodology

1. Reference Risk Assessment

2. Stress Testing

Risk Assessment and Stress Testing (Expert opinion/Qualitative)

Risk Assessment and Stress Testing (Quantitative)

Risk Assessment and Stress Test assessment

Risk Assessment

Repair costs

Stress Test Assessment

Repair costs

Case Study: Region of Chur, Switzerland

Roads/Bridges			
National	51 km (31%)		
Other roads	554 km (39%)		
Bridges	121 (20%)		
River bridge	18		

[Simulation] MODEL: Reference Risk Assessment

Ę

[Simulation] MODEL: Stress Test Assessment

Ę

Simulation MODEL: Sample output

Stress test: Example stressors

- Source □ Increase in the average intensity of rainfall events due to Climate change
 - Occurrence of only <u>low-probability high-intensity events</u>

Change in the land use which can lead to more extreme runoff and flooding

- River morphology (change in shape and direction of river channels over time)
- \Box Consecutive rainfall \rightarrow wet land \rightarrow lower absorption capacity of water \rightarrow more runoff \rightarrow more flood
- \Box Decreased soil cohesion (due climate change) \rightarrow more landslides
- Poor performance of infrastructure assets against hazards Lack of serviceability of certain [critical] links
 - Lack of serviceability/connectivity of part of the network

□ Increase in travel demand to certain locations immediately after the hazard event □ Increase in the average travel demand in the future Reduction in the post-hazard restoration capacity

Hazard

Climate change stress test

Representative Concentration Pathways (RCP Scenarios)

RCP Scenarios:

Future projections of greenhouse gas concentration and the resulting impact on climate indicators

Source: coastadapt.com.au/infographics

Climate change stress test

Increase in the intensity of extreme rainfall events due to climate change

Parameter	Rainfall intensity
Scenarios	RCP 2.6: +6%
	RCP 4.5: +14%
	RCP 8.5: +18%

	CHNE	CHW CHW	CHS	And And And	CHAW
RCP 8.5	100-year	return levels of	one-day precipit	ation events (Sum	mer) (%)
2035	+10	+7	+5	+7	+3
	(-13 to +31)	(-14 to +19)	(-11 to +16)	(-2 to +15)	(-9 to +22)
2060	+19	+12	+9	+13	+10
	(-4 to +43)	(+3 to +26)	(-14 to +39)	(-10 to +27)	(-9 to +29)
2085	+20	+12	+11	+18	+17
	(-6 to +42)	(+2 to +38)	(-24 to +38)	(-9 to +41)	(-5 to +27)
	100-year return levels of one-day precipi ation events (Wir ter) (%)				ter) (%)
2035	+8	+16	+6	+7	+10
	(-11 to +31)	(-5 to +27)	(-6 to +27)	(-6 to +27)	(+1 to +20)
2060	+5	+7	+12	+12	+8
	(-4 to +28)	(-11 to +28)	(-2 to +28)	(-9 to +34)	(-5 to +29)
2085	+19	+22	+16	+18	+18
	(-2 to +59)	(-2 to +46)	(-0 to +50)	(-1 to +50)	(+5 to +41)
2035 2060 2085	+8 (-11 to +31) +5 (-4 to +28) +19 (-2 to +59)	+16 (-5 to +27) +7 (-11 to +28) +22 (-2 to +46)	+6 (-6 to +27) +12 (-2 to +28) +16 (-0 to +50)	+7 (-6 to +27) +12 (-9 to +34) +18 (-1 to +50)	+10 (+1 to +20) +8 (-5 to +29) +18 (+5 to +41)

Conducting stress tests

- 3 stress tests + 1 Reference
 - 3 climate change stress tests

• For each stress test, 700 random scenarios were generated

- 7 Return periods (years): 2, 5, 10, 25, 50, 100, 250, 500, 1000
- 100 scenarios for each return period

• Annualized costs (\mathcal{R}) = expected annual costs considering all potential hazard events

Reference

	Annualiz	ed cost (N	Ліо. CHF)
	Level 1	Level 2	Level 3
Overall costs	22.45		
Direct costs		7.25	
Inundation			6.24
Mudflow			0.76
Scouring			0.25
Indirect costs		15.2	
Traffic S+R			0.41
Lost trips S			2.04
Lost trips R			12.75

Results: Climate change stress tests

Rainfall intensity

Parameter

Results: Climate change stress tests

Parameter	Rainfall intensity
Scenarios	RCP 2.6: +6%
	RCP 4.5: +14%
	RCP 8.5: +18%

- Setting thresholds and passing requirements for conducted stress tests
- If failed, plan for [risk reducing] interventions to achieve satisfactory results for stress tests
- Find the relevant and appropriate stress tests to ensure the resilience of the system
- Develop a guideline on how to conduct stress test on transport infrastructure